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1 Provenance

Consider a set S. One can define the complex vector space freely
generated by S C[S] in the following way:

� The elements of C[S] are finite formal sums

z1s1 + . . . + znsn (1)

where n > 0, zi ∈ C, and si ∈ S for all i = 1, . . . , n.

� Scalar multiplication is defined as follows

C ×C[S]Ð→ C[S]
(z, z1s1 + . . . + znsn)z→ zz1s1 + . . . + zznsn

and addition is performed by “gathering like terms”.

This defines a complex vector space. There is an obvious map S Ð→ C[S]
and the elements in the image of this map (which we identify with S) form
a basis for C[S]. In fact, quite a lot of the structure on C[S] is determined
by the set S. For instance, let V be an arbitrary complex vector space,
and consider a morphism ϕ ∶ C[S] Ð→ V . By linearity, we have following
calculation for an arbitrary vector z1s1 + . . . + znsn ∈ C[S]

ϕ(z1s1 + . . . + znsn) = z1ϕ(s1) + . . . + znϕ(sn) (2)

and so ϕ is determined by the set ϕ(S). In other words, if we let UV
denote the underlying vector space of V , then the map ϕ is determined by
its restriction ϕ ↾S ∶ S Ð→ UV . Moreover, every morphism C[S] Ð→ V can
be given in this way. So we have:
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Proposition 1.0.1. For any set S and any complex vector space V , there is
a bijection:

HomCVect(C[S], V ) ≅ HomSet(S,UV ) (3)

In fact, more can be said. If f ∶ S Ð→ T is a function of sets, and
ϕ ∶ V Ð→ W a linear transformation, then there exists a pair of commuting
diagrams:

Hom(C[S], V ) Hom(S,UV )

Hom(C[T ], V ) Hom(T,UV )

○C[f] ○f

Hom(C[S], V ) Hom(S,UV )

Hom(C[S],W ) Hom(S,UW )

ϕ○ Uϕ○

(4)
That is, (3) is natural.

In this discussion we have focussed on vector spaces, but similar constructions
exist: the group freely generated by S, the monoid freely generated by S, the
category freely generated by a directed graph, etc. Thus, we make a general
definition, because it’s there.

Definition 1.0.2. Let F ∶ C Ð→ D and G ∶ D Ð→ C be a pair of functors.
The functor F is left adjoint to G if for all Y ∈ D and all X ∈ C there
exists a natural bijection of homsets:

HomC (GY,X) ≅ HomD(Y,FX)

We say that (F,G) are an adjoint pair and write F ⊣ G.

2 Adjunctions

If we take C = CVect, D = Set, F = U the forgetful functor which maps
a vector space to its underlying set and a linear transformation to itself but
where we forget the fact that it is linear, and G = C[ ] the free functor
which maps a set S to the complex vector space freely generated by S and
a function of sets to its induced linear transformation, then we recover the
example given in the introduction and see that the forgetful functor is left
adjoint to the free functor.

Example 2.0.1. Find a left adjoint to the forgetful functor U ∶ Set
∗
Ð→ Set

which maps a pointed set (X,x) (ie, a set X along with an element x ∈ X)
to the set X.
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3 Monads

An adjunction is a pair of functors F ∶ C Ð→ D ,G ∶ D Ð→ C , which
means that we have two distinct sides, the side focussed on C , and the side
focussed on D . What amount of this adjunction is visible on only one side
of this adjunction? For instance, the category C can “see” the composite
GF ∶ C Ð→ C . What else? Well, returning to the defining bijection of an
adjunction (assuming F ⊣ G):

HomD(FX,Y ) ≅ HomC (X,GY ) (5)

If we put Y = FX, then we get

HomD(FX,FX) ≅ HomC (X,GFX) (6)

where the left hand side has a special element, the identity idFX . The image
of this element under the bijection is a special element ηX ∶ X Ð→ GFX. In
fact, the collection of these fit into a natural transformation

η ∶ idC ⇒ GF (7)

between endofunctors on C . On the other hand, we could also take X = GY
in the above adjunction, and obtain a natural transformation

ε ∶ FG⇒ idD (8)

However this is between endofunctors on D , and so is not visible from the
perspective of C . However, for any X ∈ C we could consider the image under
G of the morphism FGFX and obtain a natural transformation

GεF ∶ GFGF ⇒ GF (9)

between a pair of endofunctors on C . Taking M = GF and µ = GεF we have
in summary the following data:

� A functor M .

� A pair of natural transformations.

η ∶ idC ⇒M µ ∶M2⇒M (10)
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This defines the data of a monad on C , however this data actually obeys
certain axioms due to naturality of the defining bijection involved in an
adjunction pair. Once one has done the work involved in unravelling this
structure, we arrive at the following, because it’s there.

Definition 3.0.1. A monad is the data of a functor M ∶ C Ð→ C along
with a pair of natural transformations η ∶ idC ⇒M,µ ∶ T 2⇒ T such that the
following diagrams commute.

T 3 T 2

T 2 T

Tµ

µT µ

µ

T T 2 T

T
id

Tη

µ

ηT

id
(11)

Exercise 3.0.2 (Hard exercise). Think about the data of an adjunction pair
from the other side of the adjunction to invent the definition of a comonad.

Example 3.0.3. Let T ∶ SetÐ→ Set act as

TA =∐
n≥0

An (12)

Let ηA ∶ AÐ→ TA be defined by az→ (a), and let µ be concatination. Then
(T, η, µ) is a monad.

Example 3.0.4. Let T ∶ SetÐ→ Set act as

TA = A∐{�} (13)

where ηA ∶ A Ð→ TA maps a z→ a, and µA ∶ T 2A Ð→ TA maps both copies
of � to � and acts identically on the remaining elements of T 2A.

Monads are important in mathematics, but they have also been used
extensively in computer science. The previous two examples give a hint as
to how. They are very helpful for modelling side effects of programs! In
functional computer languages where side effects are not possible, the use
of monads becomes imperative. Next lecture we will see more precisely how
monads have been used both in the mathematical modelling of notions of
computation, and also how they have been used practically in the context of
a real programming language, Haskell.
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