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1 Introduction

A mathematical object of interest X is sometimes a subobject X ↣ Y where
Y has structure which makes reasoning about X simpler. For example, the
real open interval (0,1) can be embedded inside the circle [0,1]/(0 ∼ 1),
which is a compact space although (0,1) is not. Note also that the real
numbers R can be embedded into the complex numbers R ↣ C where C is
an algebraically closed field and R is not. Today, we look at a categorical
example of this phenomena, the Yoneda embedding.

2 Equivalences of categories and embeddings

Recall that a functor F ∶ C Ð→ D is faithful if for all pairs of objects (X,Y )

in C the function

HomC (X,Y ) Ð→ HomD(FX,FY )

f z→ Ff

is injective. Also, if this function is surjective then F is full.
Moreover, if for every object D ∈ D there exists an object C ∈ C such

that FC ≅D then F is essentially surjective.
This was introduced in Lecture 3 and we mentioned that it provides

sufficient conditions for F to be part of the data of an equivalence of categories.
At the time, we did not have the language of natural transformations, and
so we did not give the definition, now though we can.
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Definition 2.0.1. An equivalence of categories is a pair (F,G) of functors

F ∶ C Ð→ D

G ∶ D Ð→ C

along with a pair of natural isomorphisms η ∶ idC ⇒ GF and ε ∶ FG⇒ idD.

Exercise 2.0.2. Prove that (F,G) is an equivalence of categories if and only
if F is a fully, faithful, essentially surjective functor.

Exercise 2.0.3 (Hard exercise). Does your proof for the previous exercise
hold in the first order theory of ZFC sets?

Thus, we can think of a fully, faithful functor (not necessarily essentially
surjective) as an embedding of one category into another. The main result
of today’s lecture will exibit such an embedding.

3 An introduction to universal properties

In life, it is more important how an object behaves than it is what the object
is. For instance, when pegging in a tent peg, I might use a rock as a hammer.
Since the rock in that moment behaved like a hammer, does it really matter
that what I had was a rock and strictly speaking not a hammer?

Mathematically, we can take the same approach.

Definition 3.0.1. Let X,Y be two sets. A product of X,Y consists of a
set X × Y along with two functions πX ∶ X × Y Ð→ X,πY ∶ X × Y Ð→ Y
which together satisfy the following property: if f ∶ U Ð→ X,g ∶ U Ð→ Y are
any two functions, then there exists a unique function h ∶ U Ð→X ×Y which
makes the following diagram commute.

X X × Y Y

U

πX πY

πX πY
hj (1)

An example of a product is the cartesian product

(x, y) ∈X × Y ⇔ x ∈X and y ∈ Y (2)
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Proof. Let f ∶ U Ð→ X,g ∶ U Ð→ Y be arbitrary. First we prove uniqueness.
Say an appropriate h ∶ U Ð→ X × Y exists. Then for any u ∈ U , the first
entry of h(u) is given by πXh(u) = f(u), and the second entry is given by
πY h(u) = g(u). This means h(u) = (f(u), g(u)) which we note is independent
of h. We notice that this proves existence too.

We notice that Definition 3.0.1 never defined what the set X × Y of a
product is, but only defined a property of it.

This definition generalises to arbitrary categories immediately.

Definition 3.0.2. A product (if it exists) of two objects X,Y in a category
C consists of an object X × Y along with a pair of morphisms πX ∶ X ×

Y Ð→ X,πY ∶ X × Y Ð→ Y which together satisfy the following propery: if
f ∶ U Ð→ X,g ∶ U Ð→ Y are any two functions, then there exists a unique
morphism h ∶ U Ð→X × Y which makes the following diagram commute.

X X × Y Y

U

πX πY

f g
h (3)

Lemma 3.0.3. If a product (X × Y,πX , πY ) exists, then it is unique up to
unique isomorphism.

Proof. Let (X×̂Y, ρX , ρY ) be another product. Construct the following diagram,
considering only the solid arrows for now.

X × Y

X Y

X×̂Y

πX πY

h

ρX ρY

j (4)

The pairs of morphisms πX , πY and ρX , ρY each satisfy the other product’s
universal property. Thus we obtain two induced morphisms h ∶ X × Y Ð→
X×̂Y, j ∶X×̂Y Ð→X×Y which makes the above diagram commute, considering
all arrows now.
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Figure 1: Yoneda Lemma core idea

The composition hj makes the following diagram commute

X X × Y Y

X × Y

πX πY

f hj
h (5)

and so does the identity morphism idX×Y . By uniqueness of such morphsims,
we have hj = idX×Y . A similar argument shows that jh = idX×̂Y .

4 The Yoneda Lemma

The following Lemma has been referred to as the only theorem in category
theory.

Lemma 4.0.1. Let C be a small category (that is, a category whose collection
of objects is a set), and let P ∶ C Ð→ Set be a functor. For any object A ∈ C
there is a natural bijection

Φ ∶ Nat(Hom(A, ), P )) ≅ P (A)

η z→ ηA(idA)

Proof. The core idea is the diagram shown in Figure 1. We notice that this
proves injectivity and surjectivity.
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Exercise 4.0.2. Finish the proof of Lemma 4.0.1 by proving naturality. If
you need a hint see [1].

Definition 4.0.3. A contravariant functor F ∶ C Ð→ D is an assignment
of an object FC ∈ D to every object C ∈ C along with a function for each
pair of obejcts (X,Y ) in C

Ff ∶ HomC (X,Y ) Ð→ HomD(FY,FX) (6)

(Note the change of order of X,Y ), subject to the following conditions:

� For any pair of morphisms f ∶ X Ð→ Y, g ∶ Y Ð→ Z in C we have
F (g ○ f) = F (f) ○ F (g),

� For any object X ∈ C we have F (idX) = idFX .

Exercise 4.0.4. Show that the data of a contravariant functor F ∶ C Ð→ D
is equivalent to the data of a functor F ∶ C op

Ð→ D .

Exercise 4.0.5. Show that there is a “contravariant” version of Yoneda’s
Lemma too. That is, prove the following.

Lemma 4.0.6. Let C be a small category and P ∶ C Ð→ D a contravariant
functor. For any object A ∈ C there is a natural bijection

Nat(Hom( ,A), P ) ≅ P (A)

In the special case where P = Hom( ,B) for some object B ∈ C , Yoneda’s
lemma implies the following natural isomorphism.

Nat(Hom( ,A),Hom( ,B)) ≅ Hom(A,B) (7)

That is, there is an embedding of categories:

C ↣ SetC op

(8)

Facts which we will not prove:

� SetC op

admits all products.

� SetC op

admits all coproducts.

� SetC op

admits all limits and colimits.
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� SetC op

admits all exponential objects and a subobject classifier. In fact,
SetC op

is a topos.

All of these holds whether C has any of this structure or none. In fact, even
more can be said, we know what the excess in SetC op

is:

Proposition 4.0.7. Every object P ∈ SetC op

is a colimit of elements in the
image of C under the yoneda embedding.

Suggestion: somebody makes a talk out of this.
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