“Assignment” 1

William Troiani

September 2022

1 Introduction

We define a category £ whose objects are the types of simply-typed lambda calculus,
and whose morphisms are the terms of that calculus. The natural desiderata for such
a category are that the fundamental algebraic structure of lambda calculus, function
application and lambda abstraction, should be realised by categorical algebra.

We assume familiarity with simply-typed lambda calculus; some details are recalled
in Appendix A or one can consult [2].

Following Church’s original presentation our lambda calculus only contains function
types and ®_, denotes the set of simple types. We write A, for the set of a-equivalence
classes of lambda terms of type o, and we write =g, for the equivalence relation generated
by n equivalence.

Definition 1.1 (Category of lambda terms). The category £ has objects
ob(L) =, U{1}
and morphisms given for types o,7 € ®_, by

ﬁ(a, T) = AUHT/:BTI

L(1,0) =As/=py

L(o,1) = {*}

L£(1,1) = {7,
where % is a new symbol. For o,7,p € ®_, the composition rule is the function
(1.1) L(T,p) x L(o,T) — L(0, p)
(1.2) (N, M) — Xz . (N(Mzx))

where z ¢ FV(N)UFV(M). We write the composite as N o M. In the remaining special
cases the composite is given by the rules

(1.3) L(r,p)x L(1,7) — L(1,p), NoM=(NM),
(1.4) L(1,p) x L(1,1) — L(1,p), Nox=N,
(1.5) L(1,p) x L(o,1) — L(o,p), Nox=M’.N,

where in the final rule t ¢ FV(NN). Notice that these functions, although their rules
depend on representatives of equivalence classes, are none-the-less well defined.

For terms M, N the expression M = N always means equality of terms (that is, up to
a-equivalence) and we write M =g, N if we want to indicate equality up to Sn-equivalence
(for example as morphisms in the category £). Since the free variable set of a lambda
term is not invariant under [g-reduction, some care is necessary in defining the category
Lg below. Let —3 denote multi-step S-reduction [1, Definition 1.3.3].

Lemma 1.2. If M —3 N then FV(N) C FV(M).

Definition 1.3. Given a term M we define

FVs(M) = (] FV(N)

N=pM
where the intersection is over all terms N which are [-equivalent to M.
Clearly if M =5 M’ then FVg(M) = FVg(M').
Lemma 1.4. Giwven terms M : 0 — p and N : 0 we have
FVg((MN)) CFV(M)UFVg(N).
Lemma 1.5. Gwen M : 0 — p and N : T — o we have
(1.6) FVg(M o N) CEV(M)UFVg(N).

Given a set @ of variables we write A9 for the set of lambda terms M of type o with
FV(M) C Q. Let =g, denote the induced relation on this subset of A,.

Lemma 1.6. For any type o and set (Q of variables the image of the injective map
(1'7) Af;)/ =pn— Ap/ —pn
is the set of equivalence classes of terms M with FVg(M) C Q.

Proof. Since the simply-typed lambda calculus is strongly normalising [1, Theorem 3.5.1]
and confluent [1, Theorem 3.6.3] there is a unique normal form M in the S-equivalence

o o~

class of M, and FVg(M) = FV(M). Hence if FVz(M) C @ then FV(M) C @ and so M
is in the image of (1.7). O

Definition 1.7. For a set of variables) we define a subcategory Lo C L by

ob(Lg) =ob(L) =d_, U{1}

and for types o, p

Lo(o,p) ={M € L(o,p) | FVs(M) € Q},
Lo(1,0) ={M € L(1,0) | FVs(M) C Q},
Lq(o,1) = L(0,1) = {*},
Lo(1,1) = L(1,1) = {+} .

Note that the last two lines have the same form using the convention that FVg(x) = 0.
We denote the inclusion functor by Ig : Lo — L. We write L for Lo when Q@ = 0 and
call this the category of closed lambda terms.

We claim that the inclusion I has a right adjoint, provided @ is cofinite, by which
we mean that Q° = Y \ @ is a finite set. Our convention is to use letters p,q,... for
ordered sets of variables, with q always denoting an ordering on the finite unordered set
of variables)°. With this notation, we next define a functor

Fq L — ﬁQ
which we will prove is right adjoint to /g, with counit a natural transformation
U lgol'y — 1,

For the rest of this section let @) be a cofinite set of variables and q = (¢1 : 71, ..., t : Gk :
7) an ordering of the complement. While the functor I'y and natural transformation %/
depend on the choice of ordering, by the uniqueness of adjoints they are independent of
the ordering up to unique natural isomorphism.

Definition 1.8. For a type p we define
Lyp) =1 =1 — =1 —p
which is p if @ is empty. We set I';(1) = 1. For types o, T we define a function
(1.8) Ly:L(o,7) — Lo(Tqo,Ty7)
on aterm M : o — 7 by
(1.9) Lo(M) = U7 7m20g0 e eeqie (M- (Ugqr) -+ qi)) -

Since it is clear by inspection that FVz(I'yM) C FVg(M) \ Q° we have (M € L. In
the special cases involving 1 we define I'y by
L(o,1) — Lo(Tqo,T41) = Lo(T4o, 1), *+—= %
LA, p) — Lo(Tg1,Tap) = Lo(1,Tep), M= Agt---¢" - M
L£(1,1) — Lo(Ty1,Tq1) = Lo(1,1) %+ .

3

Remark 1.9. It is important in (1.9) that we lambda abstract over the particular variables
¢; that belong to Q)°. By a-equivalence the result of a lambda abstraction is independent
of the variable we use if the term being lambda abstracted does not contain that variable
as a free variable. However we are certainly interested in the case where M does contain
the ¢; as free variables, and in these cases I';(M) defined using, say, a sequence of variables
vi', ..., vk distinet from q would be a different morphism in £.

Lemma 1.10. I'y is a functor L — L.
With the same notation as in Definition 1.8:

Definition 1.11. For a type p we define %' € L(I'yp, p) by
(1.10) U =AU (- (Uq)gz) -~ i) -

Once again, it is significant that we use the sequence of variables q to form this term, and
not arbitrary variables of the same type. The special case is %4’ € L(I(1,1) = £(1,1)
given by %! = ~.

Proposition 1.12. Given types 11, ..., T, 0, p and a permutation 8 € Sy, the term

Pg:(7’1—>--~—>Tk—>p)—>(7'9(1)—>~~-—>7'9(k)—>p)

Py = ATy O g 80 (e (Uvg-20)Vem12) - Va1 v)
1s an isomorphism in L between the objects
(1= = 7= p) = (Toa) = - — Tow) — p) -
With the notation of the proposition:

Corollary 1.13. There is a bijection

Aﬁ—)m—)'rk—)p/ =pBn — ATG(I)_*"_)TQ(k)—)P/ =By -
Proof. We have, by the proposition

AT1—>"'—)Tk—)p/:6n = ;C(]_,Tl — s = T — p)
= E(].,Tg(l) — s = To(k) — p)

= ATe(nﬁ‘"'HTe(k)%ﬂ/ =Bn -

1.1 Structural rules and monads

As above, let L. denote the category of closed lambda terms. Throughout this section,

A CY is finite and so there is a right adjoint I'y to the inclusion [for any ordering a of
A:

1

(1.11) La,
Ia

Ly .

Definition 1.14. Denote by T, the composition I'y o I on L.

In the case where a = {x : a} we define the monad T, to have multiplication x given
by
Lo = MO (uz)z) : (0 = (@ = 0)) = (a0 = 0)

and unit £ given by
&= w'z%w:o— (a—0).

Let a,b be disjoint finite ordered sets of variables, and T,, T, the associated monads on
L. There is a distributive law between these two monads, and their composition as
functors is therefore naturally equipped with the structure of a monad. For simplicity,
we write down the propositions only in the case where a = {x : a} and b = {y : 8} are
singletons.

Lemma 1.15. With the induced monad structure the composite T, Ty is isomorphic, as a
monad, to Ty, where a : b denotes concatenation of sequences.

2 Questions

Question 1. Prove Lemma 1.4, you may use Lemma 1.2 in your proof.

Question 2. Prove that %% is a natural transformation Igol'y — 1, in the special case
where q = {q: T}.

2.1 Extension questions (requires adjoints and monads)

Question 3. Prove that Iy is right adjoint to I with counit %9 by showing that for types
o, p there are natural bijections

(2.1) L(o,p) = L(Ig(0),p) = Lg(o,T4p),
(2.2) L(1,p) = L(Io(1),p) = Lo(1,Tqp).
You can use Corollary 1.13 in your proof.
Question 4. Prove that the monads Ty, Ty admit a distributive law
X ToTy — TeT,
Xo = Az07 B2y Bre ((za)y) .

5

A Background on lambda calculus

Definition A.1. Let ¥ be a (countably) infinite set of variables, and let £ be the language
consisting of V' along with the special symbols

A : ()

Let £ be the set of words of £, more precisely, an element w € £~ is a finite sequence
(w1, ..., wy,) where each w; is in L, for convenience, such an element will be written as
wy...w,. Now let A denote the smallest subset of £* such that

o ifv eV thenx e N,
o if M\/,N € A" then (MN) € A,
o ifxeV and M € N then (\z.M) e N

N is the set of preterms. A preterm M such that M € ¥ is a variable, if M = (M, Ms)
for some preterms My, My, then M is an application, and if M = (Ax, M') for some
x €V and M € N' then M is an abstraction.

Definition A.2. Single step 3-reduction — 3 is the smallest relation on A satisfying:

e the reduction axiom:

— for all variables x and A-terms M, M’', (A\x.M)M' —z Mz = M’|, where
Mz := M'] is the term given by replacing every free occurrence of x in M
with M,

e the following compatibility axioms:

— if M —5 M’ then (MN) —5 (M'N) and (NM) —5 (NM'),
— if M —5 M’ then for any variable x, \x.M —5 Az M'.

A subterm of the form (Ax.M)M’ is a f-redex, and (\x.M)M' single step [-reduces
to M.

Definition A.3. Multi step [-reduction — (or simply f-reduction) is the smallest
relation on A satisfying

e the reduction axiom:
— if M —3 M' then M — M’,
o reflexivity:

— if M = M' then M — M,

e transitivity:
- ZfMl — M2 and M2 —» M3 then M1 —» M3

If M — M’, then M multistep [-reduces to M[x := M’].
The reflexive, symmetric closure of multistep G-reduction is $-equivalence. That is,
the smallest relation containing multi step B-reduction which is reflexive and symmetric.

There is also n-expansion, which is defined similarly, we are more terse in Definition
A4 than in Definition A.3.

Definition A.4. Single step n-expansion —, is the smallest, compatible relation on
A satisfying:

(A.1) M —, Ax.Mx

where x is a variable not in the free variable set of M. Multi step n-expansion is the
reflexive closure of single step n-expansion. n-equivalence is the reflexive, symmetric
symmetric closure of multi step n-expansion.

Bn-equivalence is the union of n-equivalence and (-equivalence.

In the simply-typed lambda calculus [1, Chapter 3| there is an infinite set of atomic
types and the set ®_, of simple types is built up from the atomic types using —. Let
A’ denote the set of untyped lambda calculus preterms in these variables, as defined in
[1, Chapter 1]. We define a subset A!, C A’ of well-typed preterms, together with a
function ¢t : A, — ®_, by induction:

e all variables z : o are well-typed and t(x) = o,

e if M = (PQ) and P,Q are well-typed with ¢(P) = ¢ — 7 and #(Q)) = o for some
o, 7 then M is well-typed and t(M) = T,

o if M = \x.N with N well-typed, then M is well-typed and T'(M) = t(z) — t(N).

We define A, = {M € A/, |t(M) = o} and call these preterms of type 0. Next we
observe that A/, C A’ is closed under the relation of a-equivalence on A’, as long as we
understand a-equivalence type by type, that is, we take

M. M =, \y. Mz = y]

as long as t(z) = t(y). Denoting this relation by =,, we may therefore define the sets of
well-typed lambda terms and well-typed lambda terms of type o, respectively:
(A.2) At = Nyy/ =a

(A.3) A, =A /=, .

Note that A, is the disjoint union over all o € &_, of A,. We write M : o as a synonym
for [M] € A,, and call these equivalence classes terms of type o. Since terms are, by

definition, a-equivalence classes, the expression M = N henceforth means M =, N unless
indicated otherwise. We denote the set of free variables of a term M by FV(M).

7

Definition A.5. The substitution operation on lambda terms is a family of functions

{substCr Y, X Ay X Ay — Awt}

oed_,

We write M|z := N| for subst,(z, N, M) and this term is defined inductively (on the
structure of M) as follows:

e if M is a variable then either M = z in which case M|z := N] = N, or M # z in
which case M|z := N| = M.

o if M = (M Ms) then M[z := N| = (M[z := N] My[z := NJ).

e if M = A\y.L we may assume by a-equivalence that y # x and that y does not occur
in N and set M|z := N| = \y.L[z := NJ|.

Note that if x ¢ FV(M) then M[z := N] = M.

References

[1] M. Segrensen and P. Urzyczyn, Lectures on the Curry-Howard isomorphism, Studies
in Logic and the Foundations of Mathematics Vol. 149, Elsevier New York, (2006).

[2] W. Troiani, An Introduction to the Untyped A-Calculus and the Church-Rosser
Theorem, https://williamtroiani.github.io/pdfs/ChurchRosserTheorem.pdf

https://williamtroiani.github.io/pdfs/ChurchRosserTheorem.pdf

	Introduction
	Structural rules and monads

	Questions
	Extension questions (requires adjoints and monads)

	Background on lambda calculus

