
“Assignment” 1

William Troiani

September 2022

1 Introduction

We define a category L whose objects are the types of simply-typed lambda calculus,
and whose morphisms are the terms of that calculus. The natural desiderata for such
a category are that the fundamental algebraic structure of lambda calculus, function
application and lambda abstraction, should be realised by categorical algebra.

We assume familiarity with simply-typed lambda calculus; some details are recalled
in Appendix A or one can consult [2].

Following Church’s original presentation our lambda calculus only contains function
types and Φ→ denotes the set of simple types. We write Λσ for the set of α-equivalence
classes of lambda terms of type σ, and we write =βη for the equivalence relation generated
by βη equivalence.

Definition 1.1 (Category of lambda terms). The category L has objects

ob(L) = Φ→ ∪ {1}

and morphisms given for types σ, τ ∈ Φ→ by

L(σ, τ) = Λσ→τ/=βη

L(1, σ) = Λσ/=βη

L(σ,1) = {?}
L(1,1) = {?} ,

where ? is a new symbol. For σ, τ, ρ ∈ Φ→ the composition rule is the function

L(τ, ρ)× L(σ, τ) −→ L(σ, ρ)(1.1)

(N,M) 7−→ λxσ . (N(Mx))(1.2)

where x 6∈ FV(N)∪FV(M). We write the composite as N ◦M . In the remaining special
cases the composite is given by the rules

L(τ, ρ)× L(1, τ) −→ L(1, ρ) , N ◦M = (N M) ,(1.3)

L(1, ρ)× L(1,1) −→ L(1, ρ) , N ◦ ? = N ,(1.4)

L(1, ρ)× L(σ,1) −→ L(σ, ρ) , N ◦ ? = λtσ . N ,(1.5)

1

where in the final rule t /∈ FV(N). Notice that these functions, although their rules
depend on representatives of equivalence classes, are none-the-less well defined.

For terms M,N the expression M = N always means equality of terms (that is, up to
α-equivalence) and we write M =βη N if we want to indicate equality up to βη-equivalence
(for example as morphisms in the category L). Since the free variable set of a lambda
term is not invariant under β-reduction, some care is necessary in defining the category
LQ below. Let �β denote multi-step β-reduction [1, Definition 1.3.3].

Lemma 1.2. If M �β N then FV(N) ⊆ FV(M).

Definition 1.3. Given a term M we define

FVβ(M) =
⋂

N=βM

FV(N)

where the intersection is over all terms N which are β-equivalent to M .

Clearly if M =β M
′ then FVβ(M) = FVβ(M ′).

Lemma 1.4. Given terms M : σ → ρ and N : σ we have

FVβ((MN)) ⊆ FVβ(M) ∪ FVβ(N) .

Lemma 1.5. Given M : σ → ρ and N : τ → σ we have

(1.6) FVβ(M ◦N) ⊆ FVβ(M) ∪ FVβ(N) .

Given a set Q of variables we write ΛQ
σ for the set of lambda terms M of type σ with

FV(M) ⊆ Q. Let =βη denote the induced relation on this subset of Λσ.

Lemma 1.6. For any type σ and set Q of variables the image of the injective map

(1.7) ΛQ
p / =βη−→ Λp/ =βη

is the set of equivalence classes of terms M with FVβ(M) ⊆ Q.

Proof. Since the simply-typed lambda calculus is strongly normalising [1, Theorem 3.5.1]

and confluent [1, Theorem 3.6.3] there is a unique normal form M̂ in the β-equivalence

class of M , and FVβ(M) = FV(M̂). Hence if FVβ(M) ⊆ Q then FV(M̂) ⊆ Q and so M
is in the image of (1.7).

Definition 1.7. For a set of variables Q we define a subcategory LQ ⊆ L by

ob(LQ) = ob(L) = Φ→ ∪ {1}

2

and for types σ, ρ

LQ(σ, ρ) = {M ∈ L(σ, ρ) | FVβ(M) ⊆ Q} ,
LQ(1, σ) = {M ∈ L(1, σ) | FVβ(M) ⊆ Q} ,
LQ(σ,1) = L(σ,1) = {?} ,
LQ(1,1) = L(1,1) = {?} .

Note that the last two lines have the same form using the convention that FVβ(?) = ∅.
We denote the inclusion functor by IQ : LQ −→ L. We write Lcl for LQ when Q = ∅ and
call this the category of closed lambda terms.

We claim that the inclusion IQ has a right adjoint, provided Q is cofinite, by which
we mean that Qc = Y \ Q is a finite set. Our convention is to use letters p, q, . . . for
ordered sets of variables, with q always denoting an ordering on the finite unordered set
of variables Qc. With this notation, we next define a functor

Γq : L −→ LQ

which we will prove is right adjoint to IQ, with counit a natural transformation

U q : IQ ◦ Γq −→ 1L .

For the rest of this section let Q be a cofinite set of variables and q = (q1 : τ1, . . . , tk : qk :
τk) an ordering of the complement. While the functor Γq and natural transformation U q

depend on the choice of ordering, by the uniqueness of adjoints they are independent of
the ordering up to unique natural isomorphism.

Definition 1.8. For a type ρ we define

Γq(ρ) = τ1 → τ2 → · · · → τk → ρ

which is ρ if Q is empty. We set Γq(1) = 1. For types σ, τ we define a function

(1.8) Γq : L(σ, τ) −→ LQ(Γqσ,Γqτ)

on a term M : σ → τ by

(1.9) Γq(M) = λU τ1→···→τk→σqτ11 · · · q
τk
k .
(
M(· · · (Uq1) · · · qk)

)
.

Since it is clear by inspection that FVβ(ΓqM) ⊆ FVβ(M) \ Qc we have ΓqM ∈ LQ. In
the special cases involving 1 we define Γq by

L(σ,1) −→ LQ(Γqσ,Γq1) = LQ(Γqσ,1) , ? 7→ ?

L(1, ρ) −→ LQ(Γq1,Γqρ) = LQ(1,Γqρ) , M 7→ λqτ11 · · · q
τk
k .M

L(1,1) −→ LQ(Γq1,Γq1) = LQ(1,1) ? 7→ ? .

3

Remark 1.9. It is important in (1.9) that we lambda abstract over the particular variables
qi that belong to Qc. By α-equivalence the result of a lambda abstraction is independent
of the variable we use if the term being lambda abstracted does not contain that variable
as a free variable. However we are certainly interested in the case where M does contain
the qi as free variables, and in these cases Γq(M) defined using, say, a sequence of variables
vτ11 , . . . , v

τk
k distinct from q would be a different morphism in L.

Lemma 1.10. Γq is a functor L −→ LQ.

With the same notation as in Definition 1.8:

Definition 1.11. For a type ρ we define U q
ρ ∈ L(Γqρ, ρ) by

(1.10) U q
ρ = λUΓqρ . (· · · ((Uq1)q2) · · · qk) .

Once again, it is significant that we use the sequence of variables q to form this term, and
not arbitrary variables of the same type. The special case is U q

1 ∈ L(Γq1,1) = L(1,1)
given by U q

1 = ?.

Proposition 1.12. Given types τ1, . . . , τk, σ, ρ and a permutation θ ∈ Sk, the term

Pθ :
(
τ1 → · · · → τk → ρ

)
→
(
τθ(1) → · · · → τθ(k) → ρ

)
Pθ = λU τ1→···→τk→ρv

τθ(1)
1 v

τθ(2)
2 · · · vτθ(k)k .

(
· · · ((Uvθ−1(1))vθ−1(2)) · · · vθ−1(k)

)
is an isomorphism in L between the objects(

τ1 → · · · → τk → ρ
) ∼= (τθ(1) → · · · → τθ(k) → ρ

)
.

With the notation of the proposition:

Corollary 1.13. There is a bijection

Λτ1→···→τk→ρ/=βη

∼= // Λτθ(1)→···→τθ(k)→ρ/=βη .

Proof. We have, by the proposition

Λτ1→···→τk→ρ/=βη = L(1, τ1 → · · · → τk → ρ)
∼= L(1, τθ(1) → · · · → τθ(k) → ρ)

= Λτθ(1)→···→τθ(k)→ρ/=βη .

4

1.1 Structural rules and monads

As above, let Lcl denote the category of closed lambda terms. Throughout this section,
A ⊆ Y is finite and so there is a right adjoint Γa to the inclusion I for any ordering a of
A:

(1.11) Lcl
I // LA

Γa

oo .

Definition 1.14. Denote by Ta the composition Γa ◦ I on Lcl.

In the case where a = {x : α} we define the monad Ta to have multiplication µ given
by

µσ = λuα→(α→σ)xα.((ux)x) : (α→ (α→ σ))→ (α→ σ)

and unit ξ given by
ξσ = λwσxα.w : σ → (α→ σ) .

Let a, b be disjoint finite ordered sets of variables, and Ta, Tb the associated monads on
Lcl. There is a distributive law between these two monads, and their composition as
functors is therefore naturally equipped with the structure of a monad. For simplicity,
we write down the propositions only in the case where a = {x : α} and b = {y : β} are
singletons.

Lemma 1.15. With the induced monad structure the composite TaTb is isomorphic, as a
monad, to Ta:b where a : b denotes concatenation of sequences.

2 Questions

Question 1. Prove Lemma 1.4, you may use Lemma 1.2 in your proof.

Question 2. Prove that U q is a natural transformation IQ ◦Γq −→ 1L in the special case
where q = {q : τ}.

2.1 Extension questions (requires adjoints and monads)

Question 3. Prove that Γq is right adjoint to IQ with counit U q by showing that for types
σ, ρ there are natural bijections

L(σ, ρ) = L(IQ(σ), ρ) ∼= LQ(σ,Γqρ) ,(2.1)

L(1, ρ) = L(IQ(1), ρ) ∼= LQ(1,Γqρ) .(2.2)

You can use Corollary 1.13 in your proof.

Question 4. Prove that the monads Ta, Tb admit a distributive law

χ : TaTb −→ TbTa

χσ = λzα→(β→σ)yβxα.((zx)y) .

5

A Background on lambda calculus

Definition A.1. Let V be a (countably) infinite set of variables, and let L be the language
consisting of V along with the special symbols

λ . ()

Let L ∗ be the set of words of L , more precisely, an element w ∈ L ∗ is a finite sequence
(w1, ..., wn) where each wi is in L , for convenience, such an element will be written as
w1...wn. Now let Λ′ denote the smallest subset of L ∗ such that

� if x ∈ V then x ∈ Λ′,

� if M,N ∈ Λ′ then (MN) ∈ Λ′,

� if x ∈ V and M ∈ Λ′ then (λx.M) ∈ Λ′

Λ′ is the set of preterms. A preterm M such that M ∈ V is a variable, if M = (M1M2)
for some preterms M1,M2, then M is an application, and if M = (λx,M ′) for some
x ∈ V and M ′ ∈ Λ′ then M is an abstraction.

Definition A.2. Single step β-reduction →β is the smallest relation on Λ satisfying:

� the reduction axiom:

– for all variables x and λ-terms M,M ′, (λx.M)M ′ →β M [x := M ′], where
M [x := M ′] is the term given by replacing every free occurrence of x in M
with M ′,

� the following compatibility axioms:

– if M →β M
′ then (MN)→β (M ′N) and (NM)→β (NM ′),

– if M →β M
′ then for any variable x, λx.M →β λxM

′.

A subterm of the form (λx.M)M ′ is a β-redex, and (λx.M)M ′ single step β-reduces
to M ′.

Definition A.3. Multi step β-reduction � (or simply β-reduction) is the smallest
relation on Λ satisfying

� the reduction axiom:

– if M →β M
′ then M �M ′,

� reflexivity:

– if M = M ′ then M �M ′,

6

� transitivity:

– if M1 �M2 and M2 �M3 then M1 �M3

If M �M ′, then M multistep β-reduces to M [x := M ′].
The reflexive, symmetric closure of multistep β-reduction is β-equivalence. That is,

the smallest relation containing multi step β-reduction which is reflexive and symmetric.

There is also η-expansion, which is defined similarly, we are more terse in Definition
A.4 than in Definition A.3.

Definition A.4. Single step η-expansion −→η is the smallest, compatible relation on
Λ satisfying:

(A.1) M −→η λx.Mx

where x is a variable not in the free variable set of M . Multi step η-expansion is the
reflexive closure of single step η-expansion. η-equivalence is the reflexive, symmetric
symmetric closure of multi step η-expansion.

βη-equivalence is the union of η-equivalence and β-equivalence.

In the simply-typed lambda calculus [1, Chapter 3] there is an infinite set of atomic
types and the set Φ→ of simple types is built up from the atomic types using →. Let
Λ′ denote the set of untyped lambda calculus preterms in these variables, as defined in
[1, Chapter 1]. We define a subset Λ′wt ⊆ Λ′ of well-typed preterms, together with a
function t : Λ′wt −→ Φ→ by induction:

� all variables x : σ are well-typed and t(x) = σ,

� if M = (P Q) and P,Q are well-typed with t(P) = σ → τ and t(Q) = σ for some
σ, τ then M is well-typed and t(M) = τ ,

� if M = λx .N with N well-typed, then M is well-typed and T (M) = t(x)→ t(N).

We define Λ′σ = {M ∈ Λ′wt | t(M) = σ} and call these preterms of type σ. Next we
observe that Λ′wt ⊆ Λ′ is closed under the relation of α-equivalence on Λ′, as long as we
understand α-equivalence type by type, that is, we take

λx .M =α λy .M [x := y]

as long as t(x) = t(y). Denoting this relation by =α, we may therefore define the sets of
well-typed lambda terms and well-typed lambda terms of type σ, respectively:

Λwt = Λ′wt/ =α(A.2)

Λσ = Λ′σ/ =α .(A.3)

Note that Λwt is the disjoint union over all σ ∈ Φ→ of Λσ. We write M : σ as a synonym
for [M] ∈ Λσ, and call these equivalence classes terms of type σ. Since terms are, by
definition, α-equivalence classes, the expression M = N henceforth means M =α N unless
indicated otherwise. We denote the set of free variables of a term M by FV(M).

7

Definition A.5. The substitution operation on lambda terms is a family of functions{
substσ : Yσ × Λσ × Λwt −→ Λwt

}
σ∈Φ→

We write M [x := N] for substσ(x,N,M) and this term is defined inductively (on the
structure of M) as follows:

� if M is a variable then either M = x in which case M [x := N] = N , or M 6= x in
which case M [x := N] = M .

� if M = (M1M2) then M [x := N] =
(
M1[x := N]M2[x := N]

)
.

� if M = λy.L we may assume by α-equivalence that y 6= x and that y does not occur
in N and set M [x := N] = λy.L[x := N].

Note that if x /∈ FV(M) then M [x := N] = M .

References

[1] M. Sørensen and P. Urzyczyn, Lectures on the Curry-Howard isomorphism, Studies
in Logic and the Foundations of Mathematics Vol. 149, Elsevier New York, (2006).

[2] W. Troiani, An Introduction to the Untyped λ-Calculus and the Church-Rosser
Theorem, https://williamtroiani.github.io/pdfs/ChurchRosserTheorem.pdf

8

https://williamtroiani.github.io/pdfs/ChurchRosserTheorem.pdf

	Introduction
	Structural rules and monads

	Questions
	Extension questions (requires adjoints and monads)

	Background on lambda calculus

